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We study fermionic superfluidity in a boson-single-species-fermion cold-atom mixture. We argue that apart
from the standard p-wave fermion pairing mediated by the phonon field of the boson gas, the system also
exhibits s-wave pairing with the anomalous correlator being an odd function of time or frequency. We show
that such a superfluid phase can have a much higher transition temperature than the p-wave and may exist for
sufficiently strong couplings between fermions and bosons. These conditions for odd-frequency pairing are
favorable close to the value of the coupling at which the mixture phase separates. We evaluate the critical
temperatures for this system and discuss the experimental realization of this superfluid in ultracold atomic
gases.
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I. INTRODUCTION

Symmetry of superfluid phases in correlated fermion liq-
uids has been a subject of extensive research for many de-
cades. Two of the most famous examples of systems exhib-
iting nontrivial symmetries of the order parameter are
superfluid 3He and high-Tc cuprates, where pairing is be-
lieved to occur in p-wave triplet and d-wave singlet chan-
nels, respectively. In 1974, in an attempt to explain the exis-
tence of several superfluid phases in 3He, Berezinskii1 had
suggested that there is yet another possibility for the triplet
pairing: while the s-wave component of the anomalous cor-
relator ����r , t����r� , t��� should identically vanish at equal
times due to the Pauli principle,2 it may still be nonzero for
t� t� �i.e., the anomalous correlator is an odd function of
time or frequency� thus giving rise to the superfluid 3He A
phase. While experiments have shown that Berezinskii’s con-
jecture is not realized in the actual 3He liquid, the idea of
such nonlocal–in-time pairing has attracted considerable at-
tention later with the discovery of superconductivity in
cuprates3,4 and heavy fermion compounds.5 In particular it
has been argued that the nonlocal character of such an order
parameter provides a natural resolution to the “paradox”
of the coexistence between the strong but instantaneous
short-range Coulomb repulsion and Cooper pairing in these
materials. More recently the odd pairing mechanism was
proposed to explain the anomalous proximity effect in
superconductor-ferromagnet junctions,6 where superconduct-
ing penetration length is believed to be significantly en-
hanced due to the formation of the triplet odd-parity compo-
nent from the standard s-wave singlet condensate.

Despite considerable interest in the subject, the question
of whether an odd-frequency phase exists in equilibrium
physical systems with no external source of pairs, i.e., as a
consequence of spontaneous symmetry breaking, remains
unresolved. Previous work has suggested that such phases
may be thermodynamically unstable,7 but the situation re-
mains unclear. Here we discuss the possibility that a boson-
fermion mixture, presently realizable in atomic traps, pro-
vides an example of a system where an odd-frequency
fermionic superfluid phase may exist under the appropriate
conditions.

We show that due to the interaction with the phonons in
the bosonic subsystem, the fermions at sufficiently low tem-
peratures exhibit pairing either in the p-wave channel or in
the s-wave odd-frequency channel. A key result is that the
s-wave odd-frequency pairing exists only when the coupling
� �to be defined below� between the phonons and the fermi-
ons exceeds a certain threshold value �c. Moreover the value
of �c is close to the coupling strength at which the mixture
phase separates. That is, upon an increase in the boson-
fermion coupling the phonon mode softens, thus leading to
stronger attractive interaction between the fermions, as a re-
sult of which the odd-frequency fermionic condensate can
form in the vicinity of the phase-separation transition. We
estimate the transition temperatures for the system. We also
point out certain cross correlations between the boson and
fermion densities that could possibly be detected in cold-
atom mixtures as a signature of the odd-frequency superfluid
phase.

II. MODEL

We describe the dilute mixture of fermions and bosons
with the following Hamiltonian density:

H = HB
0 +

�

2
��B

†�B�2 + HF
0 + ���B

†�B�F
†�F, �1�

where HB,F
0 denote the Hamiltonians for noninteracting

bosons and fermions, and � and �� are the boson-boson and
boson-fermion coupling constants. We assume that the trap
confining the particles is magnetic and therefore the fermions
are fully spin polarized. As a result, due to the Pauli prin-
ciple, direct interaction between fermion atoms is negligible.
For the purposes of the present calculation we also neglect
the spatial variation of the trapping potential and assume that
the local fermion and boson densities are controlled by
the chemical potentials so that HB,F

0 =�B,F
† �−�2 /2mB,F

−�B,F��B,F. Also, here and in the following we set �=kB
=1.

In order to derive an effective coupling between fermions
it is convenient to rewrite the bosonic fields in terms of the
density-phase variables as �B=�� exp�i	�. Furthermore,
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writing �=�0+
�, where �0 is a constant and 
� contains
only nonzero frequency �n and wave vector q components of
���n ,q�, expanding Eq. �1� up to O�
�2 ,	2� around �0, and
integrating out the phase variable, we obtain the effective
“electron”-phonon model with the Matsubara action

Seff = �
−�/2

�/2

d�� d3r�LF
0 + ��
��F

†�F�

+ �
�n,q

1

2
	mB�n

2

�0q2 + � +
q2

4mB�0

�
���n,q��2. �2�

In Eq. �2� LF
0 is free-fermion Lagrangian, �=1 /T, where T is

the temperature, and the last term describes phonons or
Bogolubov quasiparticles with dispersion relation �=csq�1
+
0

2q2�1/2, where the phonon speed of sound cs
= ���0 /mB�1/2 and the boson coherence length 
0
= �1 /4mB��0�1/2. The phonons give rise to the nonlocal
fermion density-density interaction, with vertex
−��2D0��n ,q� /2, where D0−1��n ,q� is the expression in the
brackets in the last term in Eq. �2�.

It should be noted that while the effective description in
Eq. �2� is valid for finite values of the coupling constant ��,
it breaks down for sufficiently large �� or fermion density.
Indeed, by evaluating the renormalization of the phonon
Green’s function D0 within the second-order �in ��� pertur-
bation theory in the particle-hole channel �i.e., accounting for
a single fermion polarization bubble in phonon self-energy�,
we see that

D0−1 → D−1 =
mB�2

�0q2 + ��1 − �� + �
2q2 + O�q4� , �3�

where �=��2qF
2 / �2�2�vF� and 
2=
0

2+� /12qF
2; qF and vF

=qF /mF are the Fermi momentum and velocity,
respectively.8,9 Thus for �→1 the phonon mode softens at
small q, signaling that the mixture becomes unstable against
the phase-separation transition. The value of �=1 corre-
sponds to the line of spinodal decomposition in the mean-
field analysis where the instability shows up as a saddle point
in the free energy.10 While the second-order perturbation
theory will not be quantitatively accurate for � close to 1, the
higher order renormalizations of the phonon propagator do
not alter this conclusion on the qualitative level; their effect
merely leads to a redefinition of � and 
.11 As a result effec-
tive interaction between fermions increases as one ap-
proaches the spinodal point, diverging for �=q=0 at �=1. It
should be pointed out that the phase separation is, presum-
ably, a first-order phase transition,10,12 and therefore the
separated phase becomes thermodynamically more favorable
before the spinodal line. However, an estimate of nucleation
rates shows that due to extremely low temperatures as well
as relatively weak interparticle interactions such nucleation
processes are exponentially slow. That is, upon an adiabatic
increase of fermion-boson interaction the system will remain
in the metastable mixed state up until the absolute instability
�spinodal� line, unless the boson gas parameter is comparable
to 1 �see Ref. 12�.

III. GAP EQUATION

The onset of the pairing instability corresponds to the ap-
pearance of a nonzero anomalous correlator F�r−r� ,�−���
= i�T�F�r ,���F�r� ,����. The self-consistency equation can be
readily obtained within the Eliashberg formalism.8 Following
the standard procedure we derive the linearized eigenvalue-
type equation for F�� ,q�:

G−1��n,q�G−1�− �n,q�F��n,q� = T �
�n�,q�

F��n�,q��

�
��2

2
�D��n − �n�,q − q�� − D��n + �n�,q + q��� ,

�4�

where G is the fermion Green’s function and �n=�T�2n
+1� is the Matsubara frequency. Note that the appearance of
the difference in the brackets on the right-hand side �rhs� of
Eq. �4� is due to the presence of fermions with the same spin
only; had we considered the usual singlet pairing, the differ-
ence would have been removed by the spin part of the Coo-
per pair wave function. As a result solutions to Eq. �4� should
satisfy the antisymmetry property, F��n ,q�=−F�−�n ,−q�,
which, as expected, rules out a possibility of the standard
s-wave even-in-time pairing.

In order to solve Eq. �4� we must specify the Green’s
functions G and D, which are renormalized in the particle-
hole channel according to the Dyson equations G−1=G0−1

−� and D−1=D0−1−�, where � and � are the fermion and
phonon self-energies, e.g., Eq. �3�. It is well known from the
Fermi-liquid theory8 that near the Fermi surface the renor-
malized fermion Green’s function G can be written as
Z�i�n−vF

��q−qF��−1, where Z is the quasiparticle “weight”
coefficient �Z�1� and vF

� =ZvF. Then G−1��n ,q�G−1�−�n ,
q�= ��n

2+vF
�2�q−qF�2� /Z2. Next let us expand F�� ,q� and

D�� ,q� in orbital harmonics using Legendre polynomials Pl.
For reasons to be specified below we assume that cs /vF is
small. Then we notice that D is a relatively slowly varying
function of q compared to F �which is strongly peaked at q
=qF� and therefore we can set both �q� and �q�� in the D’s on
the rhs of Eq. �4� equal to qF. As a result the D’s are func-
tions of the angle between q and q� only, and with the use of
the addition theorem we obtain

��n
2 + vF

�2
q2�Fl��n,
q� =
���Z�2

2
T�

�n�
� qF

2d
q�

�2��2

� Fl��n�,
q���Dl��n − �n�� − �− 1�lDl��n + �n��� , �5�

where Fl is the partial component of the anomalous cor-
relator F �i.e., with angular momentum l�, 
q
q−qF, and
Dl=�−1

1 d cos �D�� ,qF
�2−2 cos ��Pl�cos ��.

It is obvious that there are two types of solutions to Eq.
�5�: Fl��� with odd l and even in � and vice versa, with even
l and odd in �. For both of these solutions the bracket in the
rhs of Eq. �5� can be replaced by 2Dl��−��� and then we

note that Eq. �5� can be cast in the form ĤlFl=0, where Ĥl is
a “Hamiltonian” of a particle moving in a two-dimensional
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external potential Vl�� ,x��−2Dl���
�x� �here � is Matsubara
time and x is Fourier conjugate to 
q� and Fl�� /2,x�
=Fl�−� /2,x�=0.

For �→�, Ĥl has at least one negative eigenvalue ��,l
corresponding to the bound state of the particle. Upon an
increase of T �i.e., for finite �� the “energy” ��,l increases,
reaching 0 for some particular value of �
�c. In order to
estimate the value of �c we note that for compact Dl��� the
bound-state “wave function” behaves asymptotically as
�exp�−�−��,l��, and therefore the boundary conditions, i.e.,
the finiteness of �, start to intervene when ��1 /�−��,l.
Moreover, since �−��,l�−1/2 is the only relevant “time” scale
�in the limit when �−1 is much smaller then the cutoff fre-
quency �c of Dl; �c�csqF�, the critical temperature Tc,l
=1 /�c,l for channel l is of the order of �−��,l.

Evidently the ground states of Ĥl’s describe only the
channels with odd l and even � dependence of Fl’s. The
second type of solutions, even in l and odd in �, however,

corresponds to the first-excited states of Ĥl, which, obvi-
ously, are odd functions of � or �. While the same consider-
ations hold for the critical temperatures for these solutions as
well, there is an important distinction: in the �→� limit the
former solutions �e.g., bound ground states� always exist for
the attractive Vl’s and the latter may only exist when the
potential Vl is strong enough. Therefore even at zero tem-
perature the odd-frequency �Berezinskii� states exist only if
the coupling constant �� or � exceeds a certain threshold �c.
Moreover, since at the threshold point the state’s “wave func-
tion” is delocalized and it localizes for stronger Vl, the odd-
frequency phase emerges at zero temperature when �=�c
and extends to nonzero temperatures at stronger couplings.

It is easy to estimate this threshold coupling �c and the
critical temperatures from Eq. �5� �see the Appendix�. For the
l=0 odd-frequency case, the zero-temperature critical cou-
pling �c can be estimated as the solution to �c
= ��2 /Z2� / ln�1+�2 / �1−�c��, where �=2qF
 �see the Appen-
dix�. The solutions to this equation are lying in the interval
1 / �1+Z2���c�1, depending on the value of �. In particu-
lar, for ��1 one finds �c�1−�2 exp�−�2 /Z2�, and so the
width of the superfluid phase �in terms of the dimensionless
coupling �� is exponentially small. For ��1, 1−�c is finite
and thus the odd-superfluid phase is most favorable when the
effective boson coherence length 
 is comparable with the
interfermion distance. The transition temperature can be cal-
culated numerically �see the Appendix�, and the results are
shown in Figs. 1�a�–1�c� for different values of �. Note that
for ��1 the critical temperature reaches values �csqF.

For the even frequency p-wave case, we consider the ef-
fective potential in the l=1 channel using D1. We note that
this is the same as the p-wave case studied in Ref. 13 except
that we use the renormalized D1 following from Eq. �3�—
this places the p wave on equal footing for comparison to the
s-wave odd-frequency phase. The p-wave phase exists as the
coupling � goes to zero, although the critical temperature is
exponentially suppressed. The p-wave critical temperature is
plotted in Figs. 1�a�–1�c� for different values of the param-
eter � as a dashed line. Note that due to the relative small-
ness of the effective coupling strength D1�0� the critical tem-
perature for the p-wave pairing is much lower than that for

the odd-frequency s wave �except for Fig. 1�c�, where the
odd-frequency region is very small, i.e., for large ��.

IV. POSSIBLE EXPERIMENTAL REALIZATION AND
DISCUSSION

Since most of the standard �in solid state� thermodynamic
and transport measurements are presently unavailable in cold
atoms, detecting odd-frequency pairing in a cold-atom
fermion-boson mixture may be a nontrivial problem. One
intriguing possibility would be to take advantage of the cold-
atom time-of-flight type experiments to study the unique cor-
relations of the odd-frequency phase. For example, it has
been demonstrated in Ref. 14 that momentum correlations of
atomic fermions can be observed by the photodissociation of
molecules—upon release from a trap, the atoms exhibit den-
sity correlations between points r and −r �relative to the
center of the trap� as a consequence of the initial molecular
state. Similar measurements have been proposed to detect
other types of many-body correlations;15 for example, a fer-
mionic gas in the BCS regime has a density-density correla-
tion function �nF�r1 , t�nF�r2 , t�� which at sufficiently large
times of flight t is also peaked at r1=−r2 as a result of the
pairing.

The above argument should, however, be modified when
applied to the odd-frequency type of pairing. Indeed, since
the equal-time anomalous correlator is identically 0 for the
odd-frequency pairing, there is no r1=−r2 correlation in the
two-point fermion correlation function. However, the three-
point correlation function �nF�r1�nF�r2�nB�r3��, where nB is
boson density, does contain the signature of the odd-
frequency pairing. To see this one should notice that while

��Fq�0��F−q�0��=0 for such pairing, ��Fq�0��̇F−q�0���0.
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FIG. 1. ��a�–�c�� Critical temperatures vs fermion-phonon cou-
pling � for �=2qF
=1.0, 1.4, and 2.0. The solid line is the critical
temperature for s-wave odd-frequency pairing and the dashed line
for p-wave pairing. In all cases we have set Z=1. The x axis is the
same for all three panels, but note the different y-axis scales.
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Then, using i�̇F= �H ,�F�, where H is given by Eq. �1�, it is
easy to show that ��Fq1

�0��Fq2
�0�nBq3

�0���
�q1+q2+q3�,
where nBq is Fourier component of boson density and the
width of 
 is primarily controlled by the size of the trap. The
boson density can be expressed as nBq���0��Bq+�B−q

† �, and
therefore the three-point correlation function contains an ir-
reducible contribution peaked at q1+q2=−q3 �in Fourier
space�. This three-point correlation can be interpreted as an
order parameter proposed in the context of odd-frequency
superconductivity in a t-J model.16 As a result the real-space
equal-time-correlation function �nF�r1�nF�r2�nB�r3�� has a
correlation peak at r1+r2=−�mB /mF�r3, where we have used
the relationship between the wave vectors of the particles in
the initial state with their coordinates in the time-of-flight
image, qF,B=mF,Br / t �see Fig. 2�. Therefore particle density
cross correlations which can, in principle, be deduced from
instantaneous fermion and boson atom absorption images
would provide a direct test for odd-frequency pairing in cold-
atom mixtures.

Finally we point out that the validity of Eq. �4� is con-
trolled by the Migdal criterion, i.e., the smallness of the ver-
tex correction part. The latter can be estimated as the three-
legged diagram8 with two fermion and one phonon lines. The
standard order of magnitude estimate for the ratio between
the bare and the renormalized interaction vertices gives
�� /�1−��� �cs /vF�� �qF
�−1, where we have used the pho-
non Green’s function given by Eq. �3�. Thus, Eq. �4� is valid
for finite �, provided that � is not too close to 1, i.e., the
point of the phase separation, and �cs /vF�� �qF
�−1�1.
Moreover, since we are interested in the regime qF
�1, the
vertex correction is small as long as cs /vF�1. Therefore the
above results are quantitatively valid when 
0csmF�1���,
that is mF /mB�1. While this condition is naturally fulfilled
in solid-state systems, with mF and mB being electron and ion
masses, this is not necessarily the case in cold-atom systems.
A reasonable choice for testing our theory in trapped cold-
atom systems is a 6Li-87Rb binary mixture so that the mass
ratio condition is satisfied. Using the 87Rb background scat-
tering length of 5.32 nm and a 6Li density of 1012 cm−3, the
coupling �=1 corresponds to a 87Rb-6Li scattering length of
22.7 nm, an order of magnitude accessible via an interspecies
Feshbach resonance. To optimize the odd-frequency phase,
one would want �=2qF
�1 �see Fig. 1�. With the same
parameters as above, 2qF
0=1 corresponds to a 87Rb boson
density of 2.3�1014 cm−3 and the temperature scale Tc
�csqF�85 nK, readily accessible in cold atomic gases.

In summary, we have studied a mixture of bosons and
single-species-fermions, showing that fermionic superfluidity

of the Berezinskii odd-frequency type is likely to exist under
appropriate conditions, i.e., this pairing occurs with a finite
critical strength of the boson-fermion coupling. We have es-
timated the transition temperature and pointed out the unique
boson-fermion cross correlations which such a state exhibits.
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APPENDIX

To evaluate the threshold coupling and the critical tem-
peratures it is convenient to transform the “Schrodinger”

equation ĤlFl=��,lFl back to the frequency representation,
e.g., Eq. �5�, but with the summation over the Matsubara
frequencies replaced by integration and with an additional
��,lFl term on the left-hand side. Introducing �l�� ,
q�
= ��n

2+vF
�2
q2−��,l�Fl��n ,
q�, integrating out the momen-

tum 
q� on the rhs, and noticing that the solution �l is inde-
pendent of 
q �a result of evaluating the phonon propagator
on the Fermi surface�, we obtain

�l��� =
���ZqF�2

4�vF
� � d��

2�

�l����Dl��� − ��
���2 − ��,l

. �A1�

We consider the l=0 and l=1 solutions to Eq. �A1�. Since
the effective coupling strength Dl�0� rapidly decreases for
greater l, phases with higher orbital momentum of the order
parameter have much lower critical temperatures and thus
are never realized.

To estimate the critical coupling strength for the l=0 odd-
frequency solution let us first consider the zero-temperature
case ���,0=0 in Eq. �A1��. Since �0��� must be odd, we use
the ansatz �0����� �with cutoff �c�csqF�; we have veri-
fied that this linear � dependence as �→0 is correct by
means of explicit numerical solutions of the gap equation.
Expanding the rhs of Eq. �A1� linearly in �, canceling �, and
integrating the resulting rhs of Eq. �A1� by parts we obtain
the condition for the threshold �critical� coupling 4�2vF

�

���c�ZqF�2D0�0� �here we have neglected the cutoff depen-
dence assuming that D0��c��D0�0��. It is instructive to
evaluate the critical coupling strength for D�0�=D0�0�, that
is, without accounting for the phonon-mode softening. A
straightforward calculation yields �c=�c�

2qF
2 / �2�2�vF�

=�0
2 / �Z2 ln�1+�0

2��, where �0=2qF
0. Since this �c is always
greater than 1 �note that Z�1�, one would conclude that the
coupling needed for the formation of the Berezinskii phase is
stronger than that of the phase separation ��=1� and, there-
fore, that the phase does not exist. This conclusion, however,
is erroneous because at finite fermion-phonon coupling the
renormalization of the phonon propagator, e.g., Eq. �3�, is
crucial: as the coupling strength approaches that of the phase
separation, the effective interaction between fermions in-
creases due to phonon softening. Thus, with D�0� given by
Eq. �3� we find that �c satisfies the equation �2 / �Z2�c�
=ln�1+�2 / �1−�c��, where �=2qF
, which has solutions �c

FIG. 2. �Color online� Schematic picture of three-particle corre-
lations under time-of-flight expansion: two fermions, rF,1 and rF,2,
and one boson, rB.
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�1. In particular, for ��1, one finds �c�1−�2 exp�−�2 /
Z2� and so the width of the superfluid phase �in terms of the
dimensionless coupling �� is exponentially small. For ��1,
1−�c is finite and thus the superfluid phase exists only when
the effective boson coherence length 
 is comparable with
the interfermion distance. The transition temperature can be
estimated within the same linear ansatz for �0��� by retain-
ing the −��,0 in the denominator on the rhs and solving the
resulting equation numerically for �−��,0�Tc,0, for which
the results are presented in Figs. 1�a�–1�c� for different val-
ues of �.

For the l=1 even-frequency p-wave phase, to estimate the
critical temperature Tc,1 or ��,1 from Eq. �A1�, it is sufficient
to set �1���=const �again, with cutoff �csqF� and replace

D1��−��� in the rhs of Eq. �A1� by D1�0�. After a straight-
forward calculation using the phonon propagator of Eq. �3�
we obtain that Tc,1�csqF exp�−1 /g1�,

g1 =
�

4�2�	1 − �

4�2 +
1

2

ln	1 +

4�2

1 − �

 − 1� , �A2�

where, for simplicity, we have set Z=1. We note that the
p-wave phase has been considered in Ref. 14 for fermion-
boson mixtures and that our calculation would have been the
same as those if we had not used the renormalized phonon
propagator. The p-wave transition temperature given by Eq.
�A2� is plotted in Figs. 1�a�–1�c� for different values of the
parameter � as a dashed line.
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